Having oil analysis done on a regular basis establishes a baseline of normal wear and can help indicate when abnormal wear or contamination is occurring. A detailed analysis of an oil sample is a valuable preventive maintenance tool. In many cases, it enables identification of potential problems before a major repair is necessary and has the potential to reduce the frequencies of oil changes.
Oil analysis helps to reveal information that can be broken down into these three categories:
The assessment of the lubricant condition reveals whether the system fluid is healthy and fit for further service or ready for a change.
Increased contaminants from the surrounding environment in the form of dirt, water and process contamination are the leading cause of machine degradation and failure. Increased contamination indicates it is time to take action in order to save the oil and avoid unnecessary machine wear.
An unhealthy machine generates wear particles at an exponential rate. The detection and analysis of these particles assist in making critical maintenance decisions. Machine failure due to worn out components can be avoided. It is important to remember that healthy and clean oil leads to the minimization of machine wear.
We can carry out the below tests.
Several methods are used to measure viscosity, which is reported in terms of kinematic or absolute viscosity. While most industrial lubricants classify viscosity in terms of ISO standardized viscosity grades (ISO 3448), this does not imply that all lubricants with an ISO VG 320, for example, are exactly 320 centistokes (cSt). According to the ISO standard, each lubricant is considered to be a particular viscosity grade as long as it falls within 10 percent of the viscosity midpoint (typically that of the ISO VG number).
Viscosity is a lubricant’s most important characteristic. Monitoring the oil’s viscosity is critical because any changes can lead to a host of other problems, such as oxidation, glycol ingression or thermal stressors.
Too high or too low viscosity readings may be due to the presence of an incorrect lubricant, mechanical shearing of the oil and/or the viscosity index improver, oil oxidation, antifreeze contamination, or an influence from fuel, refrigerant or solvent contamination.
Limits for changes in the viscosity depend on the type of lubricant being analyzed but most often have a marginal limit of approximately 10 percent and a critical limit of approximately 20 percent higher or lower than the intended viscosity.
Acid number and base number tests are similar but are used to interpret different lubricant and contaminant-related questions. In an oil analysis test, the acid number is the concentration of acid in the oil, while the base number is the reserve of alkalinity in the oil. Results are expressed in terms of the volume of potassium hydroxide in milligrams required to neutralize the acids in one gram of oil. Acid number testing is performed on non-crankcase oils, while base number testing is for over-based crankcase oils.
An acid number that is too high or too low may be the result of oil oxidation, the presence of an incorrect lubricant or additive depletion. A base number that is too low can indicate high engine blow-by conditions (fuel, soot, etc.), the presence of an incorrect lubricant, internal leakage contamination (glycol) or oil oxidation from extended oil drain intervals and/or extreme heat.
FTIR is a quick and sophisticated method for determining several oil parameters including contamination from fuel, water, glycol and soot; oil degradation products like oxides, nitrates and sulfates.
The FTIR instrument recognizes each of these characteristics by monitoring the shift in infrared absorbance at specific or a range of wave numbers. Many of the observed parameters may not be conclusive, so often these results are coupled with other tests and used more as supporting evidence. Parameters identified by shifts in specific wave numbers are shown in the table below.
Elemental analysis works on the principles of atomic emission spectroscopy (AES), which is sometimes called wear metal analysis. This technology detects the concentration of wear metals, contaminants or additive elements within the oil. The two most common types of atomic emission spectroscopy are rotating disc electrode (RDE) and inductively coupled plasma (ICP).
Both of these methods have limitations in analyzing particle sizes, with RDE limited to particles less than 8 to 10 microns and ICP limited to particles less than 3 microns. Still, they are useful for providing trend data. Possible sources of many common elements are shown in the table below.
The best way to monitor this type of data is to first determine what is expected to be in the oil. An effective oil analysis report will provide reference data for the new oil so any amounts of additive elements can be easily distinguished from those of contaminants. Also, because many types of elements should be expected at some level (even contaminants in certain environments), it is better to analyze trends rather than focus on any specific measurement of elemental analysis data.
Particle counting measures the size and quantity of particles in the oil. Many techniques can be used to assess this data, which is reported based on ISO 4406:99. This standard designates three numbers separated by a forward slash providing a range number that correlates to the particle counts of particles greater than 4, 6 and 14 microns.
Moisture content within an oil sample is often measured with the Karl Fischer titration test. This test reports results in parts per million (ppm), although data is often shown in percentages. It can find water in all three forms: dissolved, emulsified and free. The crackle test and hot-plate test are non-instrument moisture tests for screening before the Karl Fischer method is used. Possible reasons for a moisture reading being too high or too low would include water ingression from open hatches or breathers, internal condensation during temperature swings or seal leaks.